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Non-resonant interacting ion acoustic waves in a magnetized
plasma
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Technical Institute ‘G Cardano’, Piazza della Resistenza 1, 00015 Monterotondo, Rome, Italy

Received 8 July 1998

Abstract. We perform an analytical and numerical investigation of the interaction among non-
resonant ion acoustic waves in a magnetized plasma. Waves are supposed to be non-resonant, i.e.
with different group velocities that are not close to each other. We use an asymptotic perturbation
method, based on Fourier expansion and spatio-temporal rescaling. We show that the amplitude
slow modulation of Fourier modes cannot be described by the usual nonlinear Schrödinger equation
but by a new model system of nonlinear evolution equations. This system is C-integrable, i.e. it can
be linearized through an appropriate transformation of the dependent and independent variables.
We demonstrate that a subclass of solutions gives rise to envelope solitons. Each envelope soliton
propagates with its own group velocity. During a collision solitons maintain their shape, the only
change being a phase shift. Numerical results are used to check the validity of the asymptotic
perturbation method.

1. Introduction

It is well known that the nonlinear Schrödinger (NLS) equation

i
∂ψ

∂τ
+ P(K)

∂2ψ

∂ξ2
± 2Q(K)|ψ |2ψ = 0 (1a)

describes the slow and small amplitude modulation of a single monochromatic plane wave of
wavenumberK. In equation (1a) ψ(ξ, τ ) is the complex amplitude of the monochromatic
wave,P andQ are constant coefficients depending onK and the stretched variablesξ, τ are
connected to the physical coordinates through the reference frame change(ε � 1):

ξ = ε(x − V t) τ = ε2t (1b)

whereV = V (K) is the group velocity of the wavepacket peaked at wavenumberK. If we
consider the plus sign in (1a) and go back to the physical reference frame, envelope soliton
solutions can be obtained:

ψ(x, t) = 2B

ch(2B((x − V t)− 8ABt))
exp 2i(A(x − V t) + (B2 − A2)t) (1c)

whereA,B are real constants.
For the consistency of the approximation methodA,B � 1 and then all solitons travel

with about the same velocityV (K) (the group velocity). We conclude that the NLS equation
can describe soliton collisions only if solitons are strongly resonant, i.e. if they have very
similar velocities, because equation (1a) is obtained only if we consider the modulation of a
single wavepacket with a well-defined group velocity.
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Various perturbation methods, for instance the Krylov–Bogolubov–Mitropolsky (KBM)
method as applied by Kakutani and Sugimoto [1], the reductive perturbation method developed
by Taniuti and his collaborators [2, 3] and the asymptotic perturbation method [4–8] can be
used to derive the NLS equation.

In particular, Calogero and Eckhaus [4–6] have demonstrated that model equations of
NLS type are obtained from the class of nonlinear evolution equations with dispersive linear
part and analytic nonlinear part. The starting hypothesis of a solution that is close to a solution
of the linear part of the equation representing a single dispersive wave and is small, so the
nonlinear effects are weak, leads to universal model equations of NLS type.

The interaction, and eventually the collisions, among solitary waves with different
velocities that are not close to each other cannot be described by the above-mentioned methods
and a different asymptotic reduction method [9, 10] based on a different spatio-temporal
rescaling

ξ = ε2x τ = ε2t (2a)

must be used. The reduction method focuses on a solution that is small, due to the weak
nonlinearity, and is close to a superposition ofN dispersive waves(N > 1), with different
group velocities.

In a previous paper [11], the particular case of ion acoustic waves in an unmagnetized
plasma has been studied and a nonlinear partial differential system of equations describing
N -interacting waves(N > 1) has been deduced for modulated amplitudes9j = 9j(ξ, τ ),

9j,τ + Vj9j,ξ = iaj909j + ibj809j + i
N∑
l=1

cjl|9l|29j (2b)

90,ττ −90,ξξ =
N∑
l=1

fl(|9l|2)ξξ (2c)

80,ττ −80,ξξ =
N∑
l=1

gl(|9l|2)ξξ (2d)

where subscripts denote partial differentiation,aj , bj , cjl , fj , gj are constant coefficients
depending on wavenumberKj andVj = Vj (Kj ) is the relative group velocity. This system
is C-integrable, i.e. can be linearized through an appropriate transformation of the dependent
and independent variables. Localized solutions exist and give rise to envelope solitons. Each
envelope soliton propagates with its own group velocity and during a collision maintains
its shape, because a phase shift is the only change. Analytical predictions are supported by
numerical results. We stress that this method is valid only ifN > 1, because forN = 1 the NLS
equation is recovered, either by the asymptotic perturbation method with the spatio-temporal
rescaling (1a) or by the multiple scale methods.

In this paper the reduction method will be extended to the study of magnetized plasma.
Also, in this case, envelope soliton dynamics leads to the NLS equation in the case of collisions
among solitons with velocities that are close to each other [12, 13]. We consider a(2 + 1)-
dimensional case and use the spatio-temporal rescaling

ξ = ε2x η = ε2y τ = ε2t. (3a)

We describe the slow modulation of amplitudes ofN non-resonant waves. In the linear limit
the solution is
N∑
j=1

Aj exp(izj ) zj = K1,j x +K2,j y − ωj t j = 1, . . . , N, N > 1 (3b)
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where Aj and Kj ≡ (K1,j , K2,j ) are the complex amplitudes and the wavevectors,
respectively. The frequencyωj is obviously furnished by the relative dispersion relation
ωj = ωj(K1,j , K2,j ). The amplitudes of these dispersive waves (constant in the linear limit)
are slowly modulated.

In section 2 we derive a model equation which describes the slow modulation and appears
as a higher-dimensional generalization of the system (2a)–(2c). Subsequently, in section 3 we
show that the obtained model system of equations is C-integrable. The Cauchy problem is
resolved, just by quadratures, and explicit nontrivial solutions are constructed. We demonstrate
the existence of solitons, i.e. coherent structures which preserve their shape during collisions,
the only change being a phase shift.

The conclusion and final considerations are reserved for the last section.

2. Derivation of the model system

We consider ion acoustic waves in a two component electron collision dominated plasma.
Electrons and ions have equal density. Moreover, electron inertia and ion temperature are
neglected(me/mi → 0, Ti/Te → 0). In the presence of an external magnetic fieldB0 = B0x,
the basic equations are

∂n

∂t
+∇ · (nv) = 0 (4a)

∂v

∂t
+ (v · ∇)v +∇φ +�x ∧ v = 0 (4b)

∇2φ = eφ − n (4c)

where n is the ion density,φ is the electric field potential defined byE = −∇φ and
v ≡ (V1, V2, V3) is the ion flow velocity. All these quantities are dimensionless, by means of

the introduction of a characteristic length, the Debye length,(KBTe/4πn0e
2)

1
2 , a characteristic

frequency, the ion plasma frequency,(4πn0e
2/m)

1
2 and a characteristic electric field potential

KBTe
e

, whereKB is the Boltzmann constant andm is the ion mass (see for example [14]).� is
a normalized measure of the strength of the magnetic field

� = B0

c
√

4πnim
= VA

c
(5)

where the velocityVA is known as the Alfv́en velocity. In this paper we study ion acoustic
waves in very strong external magnetic fields and then� ≈ 1.

Note that the ion velocity is not curl-free and no velocity potential can be introduced.
After the replacementn→ 1 +n, we get

nt + V1,x + V2,y + (nV1)x + (nV2)y = 0 (6a)

∇2φ = eφ − 1− n (6b)

V1,t + V1V1,x + V2V1,y + φx = 0 (6c)

V2,t + V1V2,x + V2V2,y + φy −�V3 = 0 (6d)

V3,t + V1V3,x + V2V3,y + φz +�V2 = 0 (6e)

where the subscripts denote partial differentiation. We have supposed variables to bez

independent without loss of generality and then we have reduced perpendicular dependence
to one coordinate [15].
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First of all, we consider the linearized equation, i.e. the equation obtained after neglecting
all the nonlinear terms:

nt + V1,x + V2,y = 0 (7a)

∇2φ − φ + n = 0 (7b)

V1,t + φx = 0 (7c)

V2,t + φy −�V3 = 0 (7d)

V3,t + φz +�V2 = 0. (7e)

Fourier modes with constant amplitudes satisfy equations (7a)–(7e)

n ≈ Aj exp i(K1,j x +K2,j y − ωj t) (8a)

φ ≈ Bj exp i(K1,j x +K2,j y − ωj t) (8b)

V1 ≈ Cj exp i(K1,j x +K2,j y − ωj t) (8c)

V2 ≈ Dj exp i(K1,j x +K2,j y − ωj t) (8d)

V3 ≈ Ej exp i(K1,j x +K2,j y − ωj t) (8e)

if the following dispersion relation is verified

ω4
j (1 +K2

j )− ω2
j (K

2
j +�2(1 +K2

j )) +�2K2
1,j = 0. (9)

Explicit expressions for the constant amplitudes are given in the appendix.
The group velocityUj = (U1,j , U2,j ) (the speed with which a wavepacket peaked at that

Fourier mode would move) is

U1,j = dωj
dK1,j

= K1,j

ωj

ω2
j (1 +�2)− ω4

j −�2

2ω2
j (1 +K2

j )− (K2
j +�2(1 +K2

j ))
(10a)

U2,j = dωj
dK2,j

= K2,j

ωj

ω2
j (1 +�2)− ω4

j

2ω2
j (1 +K2

j )− (K2
j +�2(1 +K2

j ))
. (10b)

We assume that all the group velocities are different and not close to each other and consider
a superposition ofN dispersive waves, characterized by different values of the wavevector
Kj . We want to identify solutions of the nonlinear equations that are small of orderε and
that are close in the limit of smallε to the solution (8a)–(8e). Weak nonlinearity induces
a slow variation of the amplitudes of these dispersive waves and our aim is to obtain the
nonlinear equations that describe such evolution, obviously in appropriate ‘slow’ and ‘coarse-
grained’ variables defined by equation (1c). Since the amplitude of Fourier modes are not
constant, higher order harmonics appear and in order to construct an approximate solution of
the nonlinear equations (6a)–(6e) we introduce the asymptotic Fourier expansion

n(x, y, t) =
∞∑

n=−∞
exp

(
i
N∑
j=1

njzj

)
εγnψn(ξ, η, τ, ε) (11a)

φ(x, y, t) =
∞∑

n=−∞
exp

(
i
N∑
j=1

njzj

)
εγnλn(ξ, η, τ, ε) (11b)

V1(x, y, t) =
∞∑

n=−∞
exp

(
i
N∑
j=1

njzj

)
εγnϕn(ξ, η, τ, ε) (11c)

V2(x, y, t) =
∞∑

n=−∞
exp

(
i
N∑
j=1

njzj

)
εγnµn(ξ, η, τ, ε) (11d)
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V3(x, y, t) =
∞∑

n=−∞
exp

(
i
N∑
j=1

njzj

)
εγ̃nυn(ξ, η, τ, ε) (11e)

where the indexn stands for the set{nj ; j = 1, 2, . . . N}. The functionsϕn(ξ, η, τ, ε),
ψn(ξ, η, τ, ε), λn(ξ, η, τ, ε), µn(ξ, η, τ, ε) andυn(ξ, η, τ, ε) depend parametrically onε and
we assume that their limit forε→ 0 exists and is finite. We moreover assume that the following
conditions hold:

γn = γ−n γn = 2 γ̃n = 3 if nj = 0, for j = 1, 2, . . . , N (12a)

γ̃n = γn =
N∑
j=1

|nj | otherwise. (12b)

This implies that we obtain the main amplitudes if one of the indicesnj has unit modulus and
all the others vanish. We use the following notations

ψn = 9j if nj = 1 and nm = 0 for j 6= m (13a)

ψn = 90 if nj = 0 for j = 1, 2, . . . , N (13b)

ψn = 92,j if nj = 2 and nm = 0 for j 6= m (13c)

ψn = 911,jm if nj = nm = 1 and nl = 0 for l 6= j,m (13d)

ψn = 91−1,jm if nj = 1, nm = −1 and nl = 0 for l 6= j,m, j 6= m.
(13e)

Similar notations are employed for equations (11b)–(11e). For exampleλn = L11,jm, if
nj = nm = 1 andnl = 0 for l 6= j,m, or ϕn = 8j , if nj = 1 andnm = 0 for j 6= m and
so on. Taking into account (12a), (12b) and (13a)–(13e), equation (11a) can be written more
explicitly in the following form

u(x, y, t) = ε
N∑
j=1

[exp(izj )9j + ε exp(2izj )92,j + c.c.] + ε290

+ε2
N∑

j,m=1
(j 6=m)

[exp(i(zj + zm)91+1,jm + c.c.]

+ε2
N∑

j,m=1
(j 6=m)

[exp(i(zj − zm)91−1,jm + c.c.] + o(ε3) (14)

where c.c. stands for complex conjugate. Also, in this case similar expressions are valid for
equations (11b)–(11e). Note that the variable change (1c) implies that differentiation with
respect to the fast variablesx andt must be substituted in the following way

∂t → ε2∂τ − i
N∑
j=1

njωj ∂x → ε2∂ξ + i
N∑
j=1

njK1,j ∂y → ε2∂η + i
N∑
j=1

njK2,j .

(15)

Substituting (11a)–(11e) in equations (6a)–(6e) and considering the different equations
obtained for every harmonic and for a fixed order of approximation inε, we obtain fornj = 2,
nm = 0, if m 6= j ,

92,j = B1,j9
2
j + h.o.t. 82,j = B2,j9

2
j + h.o.t. (16a)

L2,j = B3,j9
2
j + h.o.t. M2,j = B4,j9

2
j + h.o.t. N2,j = B5,j9

2
j + h.o.t. (16b)
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(a)

Figure 1. Two solitons with the same amplitude but different wavenumbers (withA1 = A2 = 0.1,
K1,1 = 1.0, K2,1 = 0.6, K1,2 = −0.1, K2,2 = −0.2). (a) Initial condition; (b) undergoing a
collision and; (c) separation. We can see that solitons preserve their shapes but with a phase shift.

where we have used the notation (13c) and h.o.t. = higher order terms. Explicit expressions
of the constant coefficientsB1,j , B2,j , B3,j , B4,j , B5,j are given in the appendix.

In a similar way fornj = nm = 1, nl = 0, if l 6= j,m, we get to the order ofε2:

911,jm = C1,jm9j9m,811,jm = C2,jm9j9m,L11,jm = C3,jm9j9m (17a)

M11,jm = C4,jm9j9m,N11,jm = C5,jm9j9m (17b)

where we have used the notation (13d) (see the appendix for the explicit expression of
coefficients). Fornj = 1, nm = −1, nl = 0, if l 6= j,m:

91−1,jm = D1,jm9j9
∗
m,81−1,jm = D2,jm9j9

∗
m,L1−1,jm = D3,jm9j9

∗
m (18a)

M1−1,jm = D4,jm9j9
∗
m,N1−1,jm = D5,jm9j9

∗
m (18b)

where we have used the notation (13e) (see the appendix).
Equation (6a) for nj = 1, nm = 0, if j 6= m gives to the order ofε3:

9j,τ + iK1,j 8̃j + iK2,j M̃j +8j,ξ +Mj,ξ + iK1,j

(
908j +9j80 +92,j8

∗
j +9∗j 82,j

+
N∑

m=1(m6=j)
(911,jm8

∗
m +91−1,jm8m +811,jm9

∗
m +81−1,jm9m)

)
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(b)

Figure 1. (Continued)

+iK2,j

(
90Mj +9jM0 +92,jM

∗
j +9∗j M2,j

+
∑

m=1(m6=j)
(911,jmM

∗
m +91−1,jmMm +M11,jm9

∗
m +M1−1,jm9m)

)
= 0 (19)

where8̃j , M̃j are the correction of orderε3 to8j andMj . These corrections can be evaluated
by considering equations (6b)–(6e) for nj = 1, nm = 0, if j 6= m and substituted into
equation (19). After long calculations, we arrive at a system of equations for theN modulated
amplitudes9j(ξ, η, τ ),

9j,τ +U1,j9j,ξ +U2,j9j,η = iaj909j + ibj809j + i
N∑
l=1

cjl|9l|29j (20a)

whereaj , bj , cjl are constant coefficients depending on the wavenumberKj ≡ (K1,j , K2,j )

(their explicit form is given in the appendix).
From equations (6a)–(6e) for nj = 0 to the order ofε4 we find

90,ττ −90,ξξ =
N∑
l=1

(fl(|9l|2)ξξ + gl(|9l|2)ξη + hl|9l|2ηη) (20b)
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(c)

Figure 1. (Continued)

80,ττ −80,ξξ =
N∑
l=1

(f̃l(|9l|2)ξξ + g̃l(|9l|2)ξη) (20c)

wherefj , gj , hj , f̃j , g̃j , are constant coefficients depending on the wavenumberKj (their
explicit form is given in the appendix).

The validity of the approximate solution should be expected to be restricted on bounded
intervals of theτ -variable and on timescalet = O( 1

ε2 ). If one wishes to study solutions on
intervals such thatτ = O( 1

ε
) then the higher terms will in general affect the solution and must

be included.
A comparison between the starting equations (6a)–(6e) and the final system (20a)–(20c)

shows that the slow and coarse-grained character of the independent variables leads to a simpler
system of equations, because many specific details characterizing the original equations get
smoothed away.

In the next section we will demonstrate that the system of equations (20a)–(20c) is
integrable by means of an appropriate transformation of the dependent and the independent
variables (C-integrability).

As we can see from equations (20a)–(20c), the system obtained does not reduce to the NLS
equation forN = 1 (one single wave), because we have used the rescaling (1c). If we use the
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(a)

Figure 2. A collision between two solitons with different amplitudes (A1 = 0.25, A2 = 0.1,
K1,1 = 1.1,K2,1 = 1.0,K1,2 = −1.2,K2,2 = −0.9). (a) Initial condition; (b) the collision and
(c) the final outcome.

spatio-temporal rescaling (1) forN = 1, we derive the NLS equation to describe modulation
of the amplitude [4–6]. Moreover, a system of equations of NLS type can be obtained only if
the group velocities are equal or appropriately close to each other [8].

3. Integrability of the model system of equations

In this section we demonstrate that the system of nonlinear equations (20a)–(20c) is C-
integrable. We set

9j(ξ, η, τ ) = ρj (ξ, η, τ )exp[iϑj (ξ, η, τ )] j = 1, . . . , N (21)

with ρj = ρj (ξ, η, τ ) > 0 andθj = ϑj (ξ, η, τ ) real functions. Then equation (20a) yields

ρj,τ (ξ, η, τ ) +U1,j ρj,ξ (ξ, η, τ ) +U2,j ρj,η(ξ, η, τ ) = 0 (22)

θj,τ (ξ, η, τ ) +U1,jϑj,ξ (ξ, η, τ ) +U2,jϑj,η(ξ, η, τ ) = aj90(ξ, η, τ ) + bj80(ξ, η, τ )

+
N∑
l=1

cjl|ρl(ξ, η, τ )|2. (23)

The general solution for the Cauchy problem of (22) reads

ρj (ξ, η, τ ) = ρj (βj τ + α1,j ξ + α2,j η) (24a)
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(b)

Figure 2. (Continued)

where theN real functionsρj (α1,j ξ +α2,j η), which represent the initial shape, can be chosen
arbitrarily andβj , α1,j , α2,j are real constants which satisfy the relation

βj + α1,jU1,j + α2,jU2,j = 0. (24b)

The general solution for (20b) and (20c) is

90(ξ, η, τ ) = γ1(ξ − τ, η) + γ2(ξ + τ, η)

+
N∑
j=1

fjα
2
1,j + gjα1,j α2,j + hjα2

2,j

β2
j − α2

1,j

{[ρj (βj τ + α1,j ξ + α2,j η)]
2} (25)

80(ξ, η, τ ) = γ3(ξ − τ, η) + γ4(ξ + τ, η)

+
N∑
j=1

f̃lα
2
1,j + g̃jα1,j α2,j

β2
j − α2

1,j

{[ρj (βj τ + α1,j ξ + α2,j η)]
2}. (26)

Here the four real functionsγ1(ξ, η), γ2(ξ, η), γ3(ξ, η), γ4(ξ, η) can be chosen arbitrarily and
their shapes are determined by the initial data.

The general solution of (23) is

θj (ξ, η, τ ) = δj (β̃j τ + α̃1,j ξ + α̃2,j η) + aj

∫ τ

0
90(ξ − U1,j (τ − τ̃ ), η − U2,j (τ − τ̃ ), τ̃ ) dτ̃

+bj

∫ τ

0
80(ξ − U1,j (τ − τ̃ ), η − U2,j (τ − τ̃ ), τ̃ ) dτ̃
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(c)

Figure 2. (Continued)

+
N∑
l=1

cjl

∫ τ

0
(ρl(ξ − U1,j (τ − τ̃ ), η − U2,j (τ − τ̃ ), τ̃ ))2 dτ̃ (27)

where theN functionsδj (α1,j ξ + α2,j η) are fixed by the initial data.
The approximate solution good to the order ofε for the system of equations (6a)–(6e) is

n(x, y, t) = 2ε
N∑
j=1

ρj cos(ϑj +K1,j x +K2,j y − ωj t) + o(ε2) (28a)

φ(x, y, t) = 2ε
N∑
j=1

ρjBj cos(ϑj +K1,j x +K2,j y − ωj t) + o(ε2) (28b)

V1(x, y, t) = 2ε
N∑
j=1

ρjCj cos(ϑj +K1,j x +K2,j y − ωj t) + o(ε2) (28c)

V2(x, y, t) = 2ε
N∑
j=1

ρjDj cos(ϑj +K1,j x +K2,j y − ωj t) + o(ε2) (28d)

V3(x, y, t) = 2ε
N∑
j=1

ρjEj cos(ϑj +K1,j x +K2,j y − ωj t) + o(ε2). (28e)
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Figure 3. Dispersion relationω as function ofK1 andK2.

The corrections of orderε2 to the approximate solution depend on higher harmonics and can
be easily calculated from results obtained in section 2 and in the appendix.

The simplest solution of the system (20a)–(20c) is the plane wave

90 = 80 = 0 ρj = Aj = constant θj = K̃1ξ + K̃2η − ω̃τ (29)

where the amplitudes and phases are connected according to the dispersion relation

ω̃j = U1,j K̃1,j +U2,j K̃2,j −
N∑
m=1

cjmA
2
m. (30)

Thanks to the C-integrable nature of the system (20a)–(c) more interesting characteristics can
be exhibited explicitly. It is possible for there to be a group ofN solitons which interact
with each other, preserving their shapes, and that propagate with the relative group velocity
Uj = (U1,j , U2,j ) (see (10)). TheseN solitons have fixed speeds but arbitrary shapes.

The collision of two solitons does not produce a change in the amplitudeρj of each of
them, but only a change in the phase given by equation (27). Every solution, in the remote past
and future, factors intoN separate solitons. The soliton order can only determine the sequence
of pair collisions or the eventual occurrence of multiple collisions but we stress that this final
outcome is independent of the localization of the solitons in the remote past. This last feature
justifies the use of the term soliton to describe these behaviours.
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Figure 4. Group velocityU1 as function ofK1 andK2.

From (28) we deduce the presence of a shift in the amplitude oscillation. For instance, we
takeN = 2 and

ρj (ξ, η, τ ) = 2Aj
ch(2Aj(α1,j ξ + α2,j η + βjτ))

(31a)

γi = 0 for 1, . . . ,4 and δj = 0 for j = 1, . . . , N (31b)

then

90(ξ, η, τ ) =
N∑
j=1

fjα
2
1,j + gjα1,j α2,j + hjα2

2,j

β2
j − α2

1,j

{
4A2

j

ch2(2Aj(βj τ + α1,j ξ + α2,j η))

}
(32)

80(ξ, η, τ ) =
N∑
j=1

f̃jα
2
1,j + g̃jα1,j α2,j

β2
j − α2

1,j

{
4A2

j

ch2(2Aj(βj τ + α1,j ξ + α2,j η))

}
(33)

θj (ξ, η, τ ) =
N∑
l=1

[4A3l(cjl(β
2
l − α2

1,l) + bj (f̃lα
2
1,j + g̃jα1,j α2,j )

+aj (flα
2
1,l + glα1,lα1,lα2,l + hlα

2
2,l))](β

2
l − α2

1,l)

× τ

ch2(2Al(α1,j (ξ − U1,j τ ) + α2,j (ζ − U2,j τ )))
(34)
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Figure 5. Group velocityU2 as function ofK1 andK2.

whereAj , j = 1, . . . , N , are real constants of orderε. Substituting (31) and (34) into (28)
we obtain the approximate solution good to the order ofε. Each solitary wave advances with
a constant velocity (the group velocity) before and after collisions. Only the phase is changed
during collisions owing to the presence of the other solitary waves. Results are illustrated in
the following example. For the initial conditions we have chosen

n(x, y,0) = 4
2∑
j=1

Aj

ch(2Aj(α1,j (x − x̄j ) + α2,j (y − ȳj ))) cos(K1,j x +K2,j y) (35)

where the initial positions arēx1 = −40, ȳ1 = 0, x̄2 = 25, ȳ2 = 25.
The approximate solution good to the order ofε is given by

n(x, y, t) = 4
2∑
j=1

Aj cos(K1,j x +K2,j y + ϑj − ωj t)
ch(2Aj(α1,j (x − x̄j ) + α2,j (y − ȳj ) + βj t))

(36)

whereθj can be calculated from (34).
In figure 1 we show the collision of two solitons with the same amplitude(A1 = A2 = 0.1,

K1,1 = 1.0, K2,1 = 0.6, K1,2 = −0.1, K2,2 = −0.2). The initial condition is shown in
figure 1(a), then the two solitons collide (figure 1(b)) and then separate (figure 1(c)). We can
see that solitons preserve their shapes but with a phase shift. In figure 2 we show a collision
between two solitons with different amplitude(A1 = 0.25,A2 = 0.1,K1,1 = 1.1,K2,1 = 1.0,
K1,2 = −1.2,K2,2 = −0.9).
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4. Discussion of results and conclusion

Evolution of the envelopes ofN non-resonant dispersive waves in a magnetized plasma has
been considered in appropriately coarse-grained and slow variables. A system of equations
describing the behaviour of ion magneto-acoustic waves as superpositions of plane waves,
the amplitude of which is modulated by the nonlinear terms, has been derived by means of
an asymptotic reduction method. For the solution we assume a Fourier expansion in which
the coefficients are power series of a small parameter and vary slowly in space and time.
Substituting the expression of the solution into the original equation and projecting onto
each Fourier mode we have derived dynamic equations for the modulated amplitudes (see
equations (20a)–(20c).

This C-integrable system can describe solitons moving with different and not close to each
other velocities. Resolving the Cauchy problem and choosing an appropriate nontrivial initial
condition we demonstrate that solitons preserve their shapes during collisions and the only
change is a modification in the phase of the amplitude oscillation.

In order to establish when the group velocity is notably different for different wavevectors,
we show the dispersion relationω = ω(K1,K2) in figure 3 and the group velocity components
U1 = U1(K1,K2) andU2 = U2(K1,K2) in figures 4 and 5 for� = 1 (� is a normalized
measure of the strength of the magnetic field, see equation (5)).

As we can see, the group velocity of Fourier modes is rapidly varying from negative to
positive values ofK1 orK2 and then the condition of different velocities can be easily satisfied.
The shapes of these surfaces are independent of small variations of�.

Now we discuss briefly some possible developments of this type of research.

(i) Derivation of the model equation for other non-resonant plasma waves, for example the
electron plasma waves.

(ii) Derivation of the model equation for the interactions among phase resonant waves, when
the following conditions are simultaneously verified

N∑
j=1

K1,j = 0
N∑
j=1

K2,j = 0
N∑
j=1

ωj = 0 (N > 2) (37)

and we assume that none of the wavenumbers vanish and that they differ in modulus
(Kj 6= 0 for j = 1, 2, . . . , N andKj 6= ±Kl if j 6= l).

(iii) Study of the behaviour of the solutions, and in particular of the envelope soliton solutions,
beyond the leading order in the expansion parameterε.

Appendix

The linearized equations are satisfied by Fourier modes with amplitudes

Bj = Aj

1 +K2
j

Cj = AjK1,j

ωj (1 +K2
j )

Dj =
Aj(ω

2
j (1 +K2

j )−K2
1,j )

K2,jωj (1 +K2
j )

(A.1a)

Ej =
−iAj�(ω2

j (1 +K2
j )−K2

1,j )

K2,jω
2
j (1 +K2

j )
. (A.1b)

For the coefficients in equations (16a) and (16b) we find

B1,j =
ωj(1 + 4K2

j )(4ω
2
j −�2 − 4�2K2

j )

(1 + 4K2
j )(−4ω4

j + 4ω2
jK

2
2,j −�2K2

1,j +�2ω2
j + 4�2ω2

jK
2
j ) + 4ω2

jK
2
1,j
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×
(

2ωjK2,j

4ω2
j −�2

(K1,jCjDj +K2,jD
2
j )−

K2,jB
2
j

1 + 4K2
j

+
i�Ej
2ωj

(K1,jCj +DjK2,j ) +
K2

1,jB
2
j

2ωj(1 + 4K2
j )

−
(
K1,jCj

2ωj
+ 1

)
(K1,jCj +K2,jDj )

)
(A.2a)

B2,j =
2B1,j − B2

j

2(1 + 4K2
j )

B3,j =
2K1,jB2,j +K1,jC

2
j +K2,jCjDj

2ωj
(A.2b)

B4,j =
2ωj(K1,jCjDj +K2,jD

2
j + 2K2,jB2,j ) + i�Ej(K1,jCj +K2,jDj )

4ω2
j −�2

(A.2c)

B5,j = Ej(CjK1,j +DjK2,j )− i�B4,j

2ωj
. (A.2d)

For the coefficients in equations (17a) and (17b) we obtain

C3,jm = (2− BjBm)
2(1 + (K1,j +K1,m)2 + (K2,j +K2,m)2)

(A.3a)

C2,jm = ((K1,j +K1,m)(C3,jm +CjCm) +K2,mDjCm +K2,jDmCj )

(ωj + ωm)
(A.3b)

C4,jm = 1

�2 + (ωj + ωm)2
(−�(K2,jDmEj +K2,mDjEm +K1,jCmDj +K1,mCjEm)

+(ωj + ωm)(K1,jCmDj + (K2,j +K2,m)(DjDm +C3,jm) +K1,mCjDm))

(A.3c)

C5,jm = (�C4,jm +K1,mCjEm +K1,jCmEj +K2,mDjEm +K2,jDmEj )

(ωj + ωm)
(A.3d)

C1,jm = ((K1,j +K1,m)(Cm +Cj +C2,jm) + (K2,j +K2,m)(C4,jm +Dj +Dm))

(ωj + ωm)
. (A.3e)

The coefficients in equations (18a) and (18b) can be simply obtained with the substitution
K1,m→−K1,m,K2,m→−K2,m, ωm→−ωm in equations (A.3a)–(A.3e).

The coefficients in equations (20a)–(20c) are given by

aj = 1

dj

(
K2

1,jBj

ωj (1 +K2
j )
−K1,jCj −K2,jDj −

ωjK
2
2,jBj

(1 +K2
j )(�

2 − ω2
j )

)
(A.4a)

bj = 1

dj

(
K1,jK2,j (ωjDj + i�Ej)

�2 − ω2
j

−K1,j −
K2

1,jCj

ωj

)
(A.4b)

and if j 6= l,

cjl = −
N∑

l=1(l 6=j)
(K1,j (C1,jmCm +D1,jmCm +C2,jm +D2,jm)

+K2,j (C1,jmDm +D1,jmDm +C4,jm +D4,jm))

−K1,j

ωj
(K1,j (C2,jmCm +D2,jmDm) +K1,m(CmC4,jm − CmD4,jm)

+(K1,j +K1,m)DmC2,jm + (K1,j −K1,m)DmD2,jm)
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if j = l,

cjl = 1

dj

(
−K1,j (CjB1,j +B3,j )−K2,j

(
B1,jDj +B4,j − 2iEj

�
(K1,jCj +K2,jDj )

)
+

(
K2

1,j

ωj (1 +K2
j )

+
K2

2,jωjBj

(ω2
j −�2)(1 +K2

j )

)
(−B2

j +B2,j )

−K1,j

ωj

(
K1,jB3,jCj − 2iEjK2,jCj

�
(K1,jCj +K2,jDj )

+2K2,jDjB3,j −K2,jB4,jCj

)
+
K2,jωj

�2 − ω2
j

(
K2,jDj

(
B4,j − 2iEj

�
(K1,jCj +K2,jDj )

)
−K1,jB3,jDj + 2K1,jCjB4,j

)
+

iK2,j�

�2 − ω2
j

(
K1,j (2CjB5,j +EjB3,j )

+K2,j

(
2B5,jDj −

2E2
j

�
(K1,jCj +K2,jDj ) +B4,jEj

)))
(A.4c)

where

dj = 1 +
K1,jCj

ωj
− DjK2,jωj + iK2,jEj�

�2 − ω2
j

(A.4d)

and

fj = C2
j − B2

j (A.4e)

gj = U1,j

(
2Dj − 2iEj

�
(K1,jCj +K2,jDj )

)
(A.4f )

hj = U2,j

(
2Dj − 2iEj

�
(K1,jCj +K2,jDj )

)
(A.4g)

f̃j = 2Cj +U1,j (C
2
j − B2

j ) (A.4h)

g̃j = 2Dj +U2,j (C
2
j − B2

j )−
2iEj
�

(K1,jCj +K2,jDj ). (A.4i)
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